Given a line
L_1->p=p_1+lambda_1 vec v_1
and two points p_a and p_b not pertaining to L_1 and not perpendicular to L_1
for p in L_1 we have
norm(p-p_a)=norm(p-p_b) or
norm(p_1+lambda_1 vec v_1-p_a)^2=norm(p_1+lambda_1 vec v_1-p_b)^2 or
norm(p_1-p_a)^2+2lambda_1 << p_1-p_a, vec v_1 >> +lambda_1^2 norm(vec v_1)^2=norm(p_1-p_b)^2+2lambda_1 << p_1-p_b, vec v_1 >> +lambda_1^2 norm(vec v_1)^2 so
norm(p_1-p_a)^2+2lambda_1 << p_1-p_a, vec v_1 >> =norm(p_1-p_b)^2+2lambda_1 << p_1-p_b, vec v_1 >> so
lambda_1^@ = (norm(p_1-p_b)^2-norm(p_1-p_a)^2)/(2<< p_b-p_a, vec v_1 >>)
The contact point in L_1 is
p_c=p_1+lambda_1^@ vec v_1
Attached an example with
p_a = (1,3)
p_b = (4,3)
p_1 = (1,1) and
vec v_1 = (1,1)
giving
p_c = (5/2,5/2)