d/dx(tan^-1(cosx/1+sinx))?

2 Answers
Jun 23, 2018

-1/2

Explanation:

We bget

1/(1+cos^2(x)/(1+sin(x))^2)*(-sin(x)(1+sin(x))-cos^2(x))/(1+sin(x))^2
This is

((1+sin(x))^2(-1-sin(x)))/(2(1+sin(x))(1+sin(x))^2)
=-1/2

Jun 23, 2018

d/(dx)(tan^-1(cosx/(1+sinx)))=-1/2

Explanation:

We know that,

color(red)((1)sin(pi/2-theta)=costheta and cos(pi/2-theta)=sintheta

color(blue)((2)sin2alpha=2sinalpha cosalpha and 1+cos2alpha=2cos^2alpha

Using (1) we get

y=tan^-1(cosx/(1+sinx))=tan^-1(color(red)(sin(pi/2-x))/(1+color(red)(cos(pi/2-x))))

For simplicity we take , color(violet)(pi/2-x=2alpha=>alpha=pi/4-x/2

So, y=tan^-1((sin2alpha)/(1+cos2alpha))...tocolor(blue)(Apply(2)

=>y=tan^-1((2sinalphacosalpha)/(2cos^2alpha))

=>y=tan^-1(sinalpha/cosalpha)

=>y=tan^-1(tanalpha) ,where ,color(violet)( alpha=pi/4-x/2

=>y=alpha

=>y=pi/4-x/2

Diff.w.r.t. x

(dy)/(dx)=0-1/2=-1/2