Consider the system? −3x + 5y + 3z = 0 6x + −7y + −4z = −2 9x + −6y + −3z = −6 Gaussian elimination of the augmented matrix for this system produces the matrix

Consider the system
−3x + 5y + 3z = 0
6x + −7y + −4z = −2
9x + −6y + −3z = −6
Gaussian elimination of the augmented matrix for this system produces the matrix

1 Answer
Sep 26, 2017

The solution is #((x),(y),(z))=((-10/9-1/9z),(-2/3-2/3z),(z))#

Explanation:

The augmented matrix is

# ( (-3,5,3,|,0) , (6,-7,-4,|,-2),(9,-6,-3,|,-6) ) #

Perform the following operations on the rows

#R3larr(R3)/3#

# ( (-3,5,3,|,0) , (6,-7,-4,|,-2),(3,-2,-1,|,-2) ) #

#R3larrR3+R1#

# ( (-3,5,3,|,0) , (6,-7,-4,|,-2),(0,3,2,|,-2) ) #

#R2larrR2+2R1#

# ( (-3,5,3,|,0) , (0,3,2,|,-2),(0,3,2,|,-2) ) #

#R3larrR3-R2#

# ( (-3,5,3,|,0) , (0,3,2,|,-2),(0,0,0,|,0) ) #

#R1larr(R1)/(-3)#

# ( (1,-5/3,-1,|,0) , (0,3,2,|,-2),(0,0,0,|,0) ) #

#R2larr(R2)/(3)#

# ( (1,-5/3,-1,|,0) , (0,1,2/3,|,-2/3),(0,0,0,|,0) ) #

#R1larr(R1+5/3R2)#

# ( (1,0,1/9,|,-10/9) , (0,1,2/3,|,-2/3),(0,0,0,|,0) ) #

The solution is

#((x),(y),(z))=((-10/9-1/9z),(-2/3-2/3z),(z))#