Consider the surface xyz=30. How do you find the unit normal vector to the surface at (2,5,3)?

1 Answer
Dec 29, 2016

hatvecn=1/19(15hatveci+6hatvecj+10hatveck)

Explanation:

xyz=30

write as

f(x,y,z)=xyz-30=0

vector normal to " "f(x)" "is given by gradf(x,y,z)

gradf(x,y,z)=(hatvecidel/(delx)+hatvecjdel/(dely)+hatveckdel/(delz))(xyz-30)

gradf(x,y,z)=yzhatveci+xzhatvecj+xyhatveck

gradf(2,5,3)=(5xx3)hatveci+(2xx3)hatvecj+(2xx5)hatveck

gradf(2,5,3)=15hatveci+6hatvecj+10hatveck

call this normal vector ""vecn

unit vector in this direction is given by

hatvecn=vecn/|vecn|

|vecn|=sqrt(15^2+6^2+10^2)=19

hatvecn=1/19(15hatveci+6hatvecj+10hatveck)