Consider the following equilibrium at 388.6 K: #NH_4HS(s) rightleftharpoons NH_3(g) + H_2S(g)#. The partial pressure of each gas is 0.203 atm. How do you calculate #K_P# and #K_C# for the reaction?
1 Answer
#K_P = 0.203#
(#"atm"# )
#K_C = 6.37 xx 10^(-3)#
(#"M"# )
The first thing you can do is write out
#K_P = (P_(NH_3)P_(H_2S))/(P_(NH_4HS))# where
#P_i# is the partial pressure of gas#i# .
The stoichiometries are all 1:1:1, so all the exponents are
#color(blue)(K_P) = (("0.203 atm")("0.203 atm"))/(("0.203 atm"))#
#=# #color(blue)("0.203")#
#" "# (#"atm"# )
Converting to
#PV = nRT#
Given that
#aA + bB -> cC + dD# ,
we would have written
#K_P = (P_C^cP_D^d)/(P_A^aP_B^b)# .
Thus, by substituting
#P_i^(n_i) = ((n_iRT)/V_i)^(n_i) = ([i]RT)^(n_i)# ,
we then have:
#K_P = (([C]RT)^(c)([D]RT)^(d))/(([A]RT)^(a)([B]RT)^(b))#
#= stackrel(K_C)overbrace(([C]^c[D]^d)/([A]^a[B]^b))((RT)^(c)(RT)^(d))/((RT)^a(RT)^b)#
At this point we've separated out the very definition of
#= K_C((RT)^(c+d))/((RT)^(a+b))#
#= K_C(RT)^((c+d)-(a+b))#
But since the stoichiometries of a reaction can be related through the moles of reactants and products, we might as well call the exponent
#Deltan_(gas) = (n_c + n_d) - (n_a + n_b)# ,where
#Deltan_(gas)# is the mols of product gases minus the mols of reactant gases.
Therefore, to convert from
#color(green)(K_P = K_C(RT)^(Deltan_(gas)))#
For this expression, be sure to use
#color(blue)(K_C) = (K_P)/((RT)^(Deltan_(gas)))#
#= (0.203 cancel"atm")/[("0.08206 L"cdotcancel"atm""/mol"cdotcancel"K")(388.6 cancel"K")]^((1 + 1) - (1))#
#= color(blue)(6.37 xx 10^(-3))#
Technically, the units are