Consider polynomial ax^2+bx+c such that p^2(0)+p^2(1)+p^2(2)+166=6p(0)+12p(1)+22p(2).then find whether foloeing are correct (A) a-b+c=2.(B)min of p(x)=2?

1 Answer
Jul 16, 2018

Both (A) and (B) are True.

Explanation:

I presume, p(x)=ax^2+bx+c, and, p^2(x)=(p(x))^2.

Now, given that,

p^2(o)+p^2(1)+p^2(2)+166=6p(o)+12p(1)+22p(2).

:. p^2(0)-6p(0)+p^2(1)-12p(1)+p^(2)-22p(2)=-166.

On completing squares,

{p(0)-3}^2+{p(1)-6}^2+{p(2)-11}^2,

=9+36+121-166.

:. {p(0)-3}^2+{p(1)-6}^2+{p(2)-11}^2=0.

:. {p(0)-3}=0, {p(1)-6}=0, &, {p(2)-11}=0.

:. p(0)=3, p(1)=6, &, p(2)=11.

Now, p(0)=3 rArr c=3...............(star_1).

p(1)=6 rArr a+b+c=6."Then, by "(star_1), a+b=3....(star_2).

"Similarly, from "p(2)=11," we get, "2a+b=4...(star_3).

"Altogether "(star_1), (star_2) and (star_3) rArr (a,b,c)=(1,2,3).

Consequently, a-b+c=2, showing that, (A) is true.

Finally, to find p_min, let us observe that,

p(x)=x^2+2x+3=(x+1)^2+2.

because AA x in RR, :. (x+1)^2 ge 0, &, :., (x+1)^2+2 ge 2.

Clearly, p_min=2, meaning that, (B) is also true.

Enjoy Maths.!