I presume, p(x)=ax^2+bx+c, and, p^2(x)=(p(x))^2.
Now, given that,
p^2(o)+p^2(1)+p^2(2)+166=6p(o)+12p(1)+22p(2).
:. p^2(0)-6p(0)+p^2(1)-12p(1)+p^(2)-22p(2)=-166.
On completing squares,
{p(0)-3}^2+{p(1)-6}^2+{p(2)-11}^2,
=9+36+121-166.
:. {p(0)-3}^2+{p(1)-6}^2+{p(2)-11}^2=0.
:. {p(0)-3}=0, {p(1)-6}=0, &, {p(2)-11}=0.
:. p(0)=3, p(1)=6, &, p(2)=11.
Now, p(0)=3 rArr c=3...............(star_1).
p(1)=6 rArr a+b+c=6."Then, by "(star_1), a+b=3....(star_2).
"Similarly, from "p(2)=11," we get, "2a+b=4...(star_3).
"Altogether "(star_1), (star_2) and (star_3) rArr (a,b,c)=(1,2,3).
Consequently, a-b+c=2, showing that, (A) is true.
Finally, to find p_min, let us observe that,
p(x)=x^2+2x+3=(x+1)^2+2.
because AA x in RR, :. (x+1)^2 ge 0, &, :., (x+1)^2+2 ge 2.
Clearly, p_min=2, meaning that, (B) is also true.
Enjoy Maths.!