|COMPLEX NUMBERS| Determine the complex conjugate of... ? Thx!

((a+bi)/(a -bi))^2 - ((a-bi)/(a +bi))^2

2 Answers
Jan 10, 2018

See below.

Explanation:

If z = x+i y then bar z = x-iy so

bar(((a+bi)/(a -bi))^2 - ((a-bi)/(a +bi))^2) = ((a-bi)/(a +bi))^2 - ((a+bi)/(a -bi))^2 = (8ab(b^2- a^2 ))/(a^2+b^2)^2i

Jan 11, 2018

Complex conjugate is -(8ab(a^2-b^2)i)/((a^2+b^2)^2

Explanation:

((a+bi)/(a-bi))^2-((a-bi)/(a+bi))^2

= (a^2-b^2+2abi)/(a^2-b^2-2abi)-(a^2-b^2-2abi)/(a^2-b^2+2abi)

= ((a^2-b^2)^2+4ab(a^2-b^2)i-4a^2b^2-((a^2-b^2)^2-4ab(a^2-b^2)i-4a^2b^2))/((a^2-b^2)^2+4a^2b^2)

= (8ab(a^2-b^2)i)/((a^2+b^2)^2

Hence complex conjugate is -(8ab(a^2-b^2)i)/((a^2+b^2)^2)