Can you write (a+b)^0.5 - (a-b)^0.5 as the square root of a difference?
2 Answers
Explanation:
If
(sqrt(a+b)-sqrt(a-b))^2 = (sqrt(a+b))^2-2sqrt(a+b)sqrt(a-b)+(sqrt(a-b))^2
color(white)((sqrt(a+b)-sqrt(a-b))^2) = (a+b)-2sqrt(a+b)sqrt(a-b)+(a-b)
color(white)((sqrt(a+b)-sqrt(a-b))^2) = 2a-2sqrt((a+b)(a-b))
color(white)((sqrt(a+b)-sqrt(a-b))^2) = 2a-2sqrt(a^2-b^2)
So yes,
(a+b)^0.5-(a-b)^0.5 = sqrt(2a-2sqrt(a^2-b^2))
Explanation:
squaring both sides