Can you find the general solution to the following equation?

#cos^3x + cos^2x - 4cos^2frac{x}{2} = 0#

1 Answer
Jul 16, 2018

Please see the explanation below

Explanation:

The equation is

#cos^3x+cos^2x-4cos^2(x/2)=0#

Let #u=x/2#

#cos^3 2u+cos^2 2u-4cos^2(u)=0#

But

#cos2u=2cos^2u-1#

Therefore,

#(2cos^2u-1)^3+(2cos^2u-1)^2-4cos^2u=0#

#8cos^6u-12cos^4u+6cos^2u-1+4cos^4u-4cos^2u+1-4cos^2u=0#

#8cos^6u-8cos^4u-2cos^2u=0#

#2cos^2u(4cos^4u-4cos^2u-1)=0#

Therefore,

#{(cos^2u=0),(4cos^4u-4cos^2u-1=0):}#

#<=>#, #{(cosu=0),(cos^2u=(4+sqrt(16+16))/8),(cos^2u=(4-sqrt(16+16))/8):}#

#<=>#,

#u=pi/2+2kpi#

# u=3/2pi+2kpi#

#cosu=+-sqrt((1+sqrt2)/2)#

#cosu=+-sqrt((1-sqrt2)/2 ) #

#u=arccos(+sqrt((1+sqrt2)/2))#

#=>#, #u=O/# as #cosu>1#

#u=arccos(-sqrt((1+sqrt2)/2))#

#=>#, #u=O/# as #cosu<-1#

#u=arccos(+sqrt((1-sqrt2)/2))#

#u=arccos(-sqrt((1-sqrt2)/2))#

Finally,

#x/2=pi/2+2kpi#, #=>#, #x=pi+4kpi#

#x/2=3pi/2+2kpi#, #=>#, #x=3pi+4kpi#

#x/2=O/#, #=>#, #x=O/#

#x/2=arccos(+sqrt((1-sqrt2)/2))+2kpi#, #=>#, #x=2arccos(+sqrt((1-sqrt2)/2))+4kpi#

#x/2=arccos(-sqrt((1-sqrt2)/2))+2kpi#, #=>#, #x=2arccos(-sqrt((1-sqrt2)/2))+4kpi#