Can anyone help prove this trigonometric identity?

sinx/(1+cos x) + cos x/sin x = csc x sinx1+cosx+cosxsinx=cscx

2 Answers
Nov 29, 2016

Cross multiply and simplify LHS (as below)

Explanation:

To prove: sinx/(1+cosx) + cosx/sinx = cscxsinx1+cosx+cosxsinx=cscx

LHS = sinx/(1+cosx) + cosx/sinxLHS=sinx1+cosx+cosxsinx

=(sin^2x+cosx+cos^2x)/(sinx+sinxcosx)=sin2x+cosx+cos2xsinx+sinxcosx

Since: sin^2x + cos^2x=1sin2x+cos2x=1

LHS= (1+cosx)/(sinx(1+cosx))LHS=1+cosxsinx(1+cosx)

= cancel(1+cosx)*1/(sinx*cancel(1+cosx))

=1/sinx = cscx = RHS

Nov 29, 2016

sinx/(1+cosx)+cosx/sinx = ((sinx))/((1+cosx)) * ((1-cosx))/((1-cosx))+cosx/sinx

= (sinx(1-cosx))/(1-cos^2x) +cosx/sinx

= (sinx(1-cosx))/(sin^2x) +cosx/sinx

= (1-cosx)/sinx +cosx/sinx

= (1-cosx+cosx)/sinx

= 1/sinx

= cscx