Can anyone help me, please? #intdx/(x^2-4x-13#
2 Answers
# int \ 1/(x^2-4x-13) \ dx = 1/(2sqrt(17)) \ { ln|x-2-sqrt(17)| -ln|x-2+sqrt(17)| } + C#
Explanation:
We have:
# I = int \ 1/(x^2-4x-13) \ dx #
We can decompose the integrand into partial fraction. First note that the roots of the equation (using the quadratic formula) are:
# x^2-4x-13 =0 => x=2+-sqrt(17) #
So we can factorise the denominator, and decompose into partial fractions, which will take the form:
# 1/(x^2-4x-13) -= 1/( (x-2-sqrt(17))(x-2+sqrt(17)) ) #
# " " = A/(x-2-sqrt(17)) + B/(x-2+sqrt(17)) #
# " " = (A(x-2+sqrt(17)) + B(x-2-sqrt(17))) / ((x-2-sqrt(17))(x-2+sqrt(17)))#
Leading to the identity:
# 1 -= A(x-2+sqrt(17)) + B(x-2-sqrt(17)) #
Where
Put
#x = 2+sqrt(17) => 1 = \ \ \ \ \ 2Asqrt(17) => A = \ \ \ \ \ 1/(2sqrt(17)) #
Put#x = 2-sqrt(17) => 1 = -2Bsqrt(17) => B = -1/(2sqrt(17)) #
So using partial fraction decomposition we have:
# I = int \ (1/(2sqrt(17)))/(x-2-sqrt(17)) + (-1/(2sqrt(17)))/(x-2+sqrt(17)) \ dx #
# \ \ = 1/(2sqrt(17)) \ int \ 1/(x-2-sqrt(17)) -1/(x-2+sqrt(17)) \ dx #
And now all integrands are readily integratable, so:
# I = 1/(2sqrt(17)) \ { ln|x-2-sqrt(17)| -ln|x-2+sqrt(17)| } + C#
If you're willing to use inverse hyperbolic trigonometric functions, see below.
Explanation:
# = 1/17 int 1/(((x-2)/sqrt17)^2-1) dx#
Let
# = -1/sqrt17 tanh^-1 u +C#
# = -1/sqrt17 tanh^-1((x-2)/sqrt17) +C#