Calculate the pH of a 0.10 M #H_3PO_4# solution that is also 0.0005 M #(NH_4)_3PO_4#?
#K_(a_1)=1.0xx10^-6#
#K_(a_2)=1.0xx10^-8#
#K_(a_3)=1.0xx10^-10#
Reactions used:
#H_3PO_4(aq)+H_2O(l)\rightleftharpoonsH_3O^+(aq)+H_2PO_4^(-)(aq)#
#H_2PO_4^(-)(aq)+H_2O(l)\rightleftharpoonsH_3O^+(aq)+HPO_4^(2-)(aq)#
#HPO_4^(2-)(aq)+H_2O(l)\rightleftharpoonsH_3O^+(aq)+PO_4^(3-)(aq)#
We are asked to use an ICE table at least once.
Reactions used:
#H_3PO_4(aq)+H_2O(l)\rightleftharpoonsH_3O^+(aq)+H_2PO_4^(-)(aq)# #H_2PO_4^(-)(aq)+H_2O(l)\rightleftharpoonsH_3O^+(aq)+HPO_4^(2-)(aq)# #HPO_4^(2-)(aq)+H_2O(l)\rightleftharpoonsH_3O^+(aq)+PO_4^(3-)(aq)#
We are asked to use an ICE table at least once.
2 Answers
Unfortunately, these
#K_(a1) = 7.5 xx 10^(-3)#
#K_(a2) = 6.3 xx 10^(-8)#
#K_(a3) = 4.5 xx 10^(-13)#
The magnitude of
When I do that, I get
Apparently, the salt was enough to negate the second dissociation.
DISCLAIMER: REALLY LONG ANSWER!
The
#"PO"_4^(3-)(aq) + "H"_2"O"(l) rightleftharpoons "HPO"_4^(2-)(aq) + "OH"^(-)(aq)#
#"I"" "0.0005" "" "" "" "-" "" "" "0" "" "" "" "0#
#"C"" "-x" "" "" "" "" "-" "" "+x" "" "" "+x#
#"E"" "0.0005-x" "" "-" "" "" "x" "" "" "" "x#
This has
(In actuality, it is
The first... actual acid ICE table is:
#"H"_3"PO"_4(aq) + "H"_2"O"(l) rightleftharpoons "H"_3"O"^(+)(aq) + "H"_2"PO"_4^(-)(aq)#
#"I"" "0.10" "" "" "" "-" "" "" "0" "" "" "" "" "0#
#"C"" "-x" "" "" "" "-" "" "+x" "" "" "" "+x#
#"E"" "0.10-x" "" "-" "" "" "x" "" "" "" "" "x#
The first
#7.5 xx 10^(-3) = (["H"_3"O"^(+)]["H"_2"PO"_4^(-)])/(["H"_3"PO"_4])#
#= (x^2)/(0.10-x)#
The small
#= x^2/(0.10)#
#=> x = sqrt(0.10 cdot 7.5 xx 10^(-3)) = "0.0274 M"#
That is the first
#["H"_3"O"^(+)]_(eq1) ~~ "0.0274 M" = ["H"_3"O"^(+)]_(i2)#
#["H"_2"PO"_4^(-)]_(eq1) ~~ "0.0274 M" -= ["H"_2"PO"_4]_(i2)#
#["H"_3"PO"_4]_(eq1) ~~ "0.0726 M"#
So now, we have the second ICE table, already accounting for the
#"H"_2"PO"_4^(-)(aq) + "H"_2"O"(l) rightleftharpoons "H"_3"O"^(+)(aq) + "HPO"_4^(2-)(aq)#
#"I"" "0.0274" "" "" "-" "" "" "0.0274" "" "" "0.0005#
#"C"" "-x" "" "" "" "-" "" "" "+x" "" "" "+x#
#"E"" "0.0274-x" "-" "" "" "0.0274+x" "0.0005+x#
Now, the cumulative
#["H"_3"O"^(+)]_(eq) = ["H"_3"O"^(+)]_(eq1) + x#
Set up the second
#6.3 xx 10^(-8) = (["H"_3"O"^(+)]["HPO"_4^(2-)])/(["H"_2"PO"_4^(-)])#
#= ((0.0274+x)(0.0005+x))/(0.0274-x)#
In this case, since
#6.3 xx 10^(-8) = ((0.0274cancel(+x)^"small")(0.0005+x))/(0.0274cancel(-x)^"small")#
#~~ 0.0005 + x#
Therefore,
#x ~~ -"0.0005 M"#
Apparently, the salt is enough to reverse the direction of this reaction.
#color(blue)(["H"_3"O"^(+)]_(eq)) = ["H"_3"O"^(+)]_(eq1) + ["H"_3"O"^(+)]_(eq2)#
#= "0.0274 M" + (-"0.0005 M")#
#~~# #color(blue)("0.0269 M")#
So, the
#"pH" = -log["H"_3"O"^(+)]_(eq) = color(blue)(1.57)#
This is using the
Explanation:
Following the same ICE tables as the answer above (? I will check to make sure. If they don't match, I will upload a picture of my work asap)
- derived from table 1,
#K_(a_1)=1.0xx10^-6=(x*x)/(0.10-x)#
#x^2\cong(1.0xx10^-6)(0.10)#
#x=\approx3.2xx10^-4# M - derived from table 2,
#K_(a_2)=1.0xx10^-8=(x(0.00032+x))/(0.00032-x)#
#x\cong((1.0xx10^-8)(\cancel(0.00032)))/(\cancel(0.00032))#
#x\rArr1.0xx10^-8# M - table 3 with
#K_(a_3)# calculates#x=0# , so negligible.Finding pH:
#[H^+]_(\text(total))=0.0032+0.00032001=0.00064001# M
which is#6.4xx10^-4# M of#[H^+]#
pH is#-log[H^+]=-log(6.4xx10^-4)\approx3.19#