C_n = sum_(k=0)^n cosh(kx) = 1/2sum_(k=0)^n e^(kx)+1/2 sum_(k=0)^n e^(-kx)Cn=n∑k=0cosh(kx)=12n∑k=0ekx+12n∑k=0e−kx
but, using the formula for the sum of geometric sequences,
sum_(k=0)^n e^(kx) = (e^((n+1)x)-1)/(e^x-1)n∑k=0ekx=e(n+1)x−1ex−1
sum_(k=0)^n e^(-kx) = (e^(-(n+1)x)-1)/(e^-x-1)n∑k=0e−kx=e−(n+1)x−1e−x−1
and
C_n = 1/2( (e^((n+1)x)-1)/(e^x-1)+ (e^(-(n+1)x)-1)/(e^-x-1)) = 1/2(1 + Cosh(n x) + Coth(x/2) Sinh(n x))Cn=12(e(n+1)x−1ex−1+e−(n+1)x−1e−x−1)=12(1+cosh(nx)+coth(x2)sinh(nx))
with similar procedure we get at
S_n = 1/2( (e^((n+1)x)-1)/(e^x-1)- (e^(-(n+1)x)-1)/(e^-x-1)) = Csch(x/2) Sinh((n x)/2)Sinh(1/2 (1 + n) x)Sn=12(e(n+1)x−1ex−1−e−(n+1)x−1e−x−1)=csch(x2)sinh(nx2)sinh(12(1+n)x)