Answer The Following Question ?

1/(1 . 4)11.4+1/(4 . 7)14.7+1/(7 . 10)17.10......... Summation Of n^(th) term ??

2 Answers
Aug 1, 2018

sum_(n=1)^N 1/((3n-2)(3n+1)) = N/(3N+1)

Explanation:

The general term can be written:

a_n = 1/((3n-2)(3n+1)) = 1/3(1/(3n-2)-1/(3n+1))

So:

sum_(n=1)^N a_n = sum_(n=1)^N 1/3(1/(3n-2)-1/(3n+1))

color(white)(sum_(n=1)^N a_n) = 1/3(sum_(n=1)^N 1/(3n-2)-sum_(n=1)^N 1/(3n+1))

color(white)(sum_(n=1)^N a_n) = 1/3(sum_(n=1)^N 1/(3n-2)-sum_(n=2)^(N+1) 1/(3n-2))

color(white)(sum_(n=1)^N a_n) = 1/3(1+color(red)(cancel(color(black)(sum_(n=2)^N 1/(3n-2))))-color(red)(cancel(color(black)(sum_(n=2)^N 1/(3n-2)))) - 1/(3N+1))

color(white)(sum_(n=1)^N a_n) = 1/3(1-1/(3N+1))

color(white)(sum_(n=1)^N a_n) = N/(3N+1)

Aug 1, 2018

S_n=n/(3n+1)

Explanation:

Let ,

S=1/(1*4)+1/(4*7)+1/(7*10)+...+1/((3n-2)(3n+1))

:.t_n=1/((3n-2)(3n+1))=1/3[1/(3n-2)-1/(3n+1)]

:.S_n=1/3sum_(r=1)^n [1/(3r-2)-1/(3r+1)]

:.S_n=1/3[(1/1-cancel(1/4))color(white)(........................)lArrcolor(red)( r=1

color(white)(..............)+(cancel(1/4)-cancel(1/7))color(white)(........................)lArr color(red)(r=2

color(white)(..............)+(cancel(1/7)-cancel(1/10))color(white)(........................)lArrcolor(red)( r=3

color(white)(..............)+(cancel(1/10)-cancel(1/13))color(white)(........................)lArrcolor(red)( r=4

color(white)(..............)+cancel(..).................

color(white)(..............)+...................

color(white)(..............)+.............cancel(......

color(white)(..............)+(cancel(1/(3n-5))-cancel(1/(3n-2)))color(white)(..............)lArrcolor(red)( r=n-1

color(white)(..............)+(cancel(1/(3n-2))-1/(3n+1))]color(white)(...............)lArrcolor(red)( r=n

:.S_n=1/3[1/1-1/(3n+1)]

:.S_n=1/3[(3n+1-1)/(3n+1)]=1/3[(3n)/(3n+1)]

:.S_n=n/(3n+1)