An object with a mass of 2 kg is traveling in a circular path of a radius of 4 m. If the object's angular velocity changes from 2 Hz to 5 Hz in 3 s, what torque was applied to the object?

1 Answer
Mar 9, 2016

Torque: \tau = \frac{dL}{dt}=\frac{d}{dt}(I\omega)= I\dot(\omega)=2\pi.mr^2\dot{f} = 16\pi \quad N.m

Explanation:

\omega = 2\pif; \qquad \dot{\omega} = 2\pi\dot{f}; \qquad I = mr^2

Torque: \tau = \frac{dL}{dt}=\frac{d}{dt}(I\omega)= I\dot(\omega)=2\pi.mr^2\dot{f}

m=2\quad kg; \qquad r = 4\quad m; \dot{f}=\frac{\Delta f}{\Delta t}=(5Hz-3Hz)/(3\quad s)=1s^{-2}

\tau = 2\pi.(2\quad kg)(4\quad m)^2(1s^{-2})=16\pi \quad N.m