The kinetic energy is
KE=1/2mv^2KE=12mv2
The mass is m=8kgm=8kg
The initial velocity is =u_1ms^-1=u1ms−1
The final velocity is =u_2 ms^-1=u2ms−1
The initial kinetic energy is 1/2m u_1^2=640000J12mu21=640000J
The final kinetic energy is 1/2m u_2^2=320000J12mu22=320000J
Therefore,
u_1^2=2/8*640000=160000m^2s^-2u21=28⋅640000=160000m2s−2
and,
u_2^2=2/8*320000=80000m^2s^-2u22=28⋅320000=80000m2s−2
The graph of v^2=f(t)v2=f(t) is a straight line
The points are (0,160000)(0,160000) and (12,80000)(12,80000)
The equation of the line is
v^2-160000=(80000-160000)/12tv2−160000=80000−16000012t
v^2=-6666.7t+160000v2=−6666.7t+160000
So,
v=sqrt((-6666.7t+160000)v=√(−6666.7t+160000)
We need to calculate the average value of vv over t in [0,12]t∈[0,12]
(12-0)bar v=int_0^12(sqrt(-6666.7t+160000))dt(12−0)¯v=∫120(√−6666.7t+160000)dt
12 barv=[((-6666.7t+160000)^(3/2)/(-3/2*6666.7))]_0^1212¯v=⎡⎣⎛⎝(−6666.7t+160000)32−32⋅6666.7⎞⎠⎤⎦120
=((-6666.7*12+160000)^(3/2)/(-10000))-((-1666.7*0+160000)^(3/2)/(-10000))=⎛⎝(−6666.7⋅12+160000)32−10000⎞⎠−⎛⎝(−1666.7⋅0+160000)32−10000⎞⎠
=160000^(3/2)/10000-80000^(3/2)/10000=1600003210000−800003210000
=4137.3=4137.3
So,
barv=4137.3/12=344.8ms^-1¯v=4137.312=344.8ms−1
The average speed is =344.8ms^-1=344.8ms−1