An object has a mass of 6 kg6kg. The object's kinetic energy uniformly changes from 540 KJ540KJ to 32 KJ32KJ over t in [0, 4 s]t[0,4s]. What is the average speed of the object?

1 Answer
Jul 24, 2017

The average speed is =296.3ms^-1=296.3ms1

Explanation:

The kinetic energy is

KE=1/2mv^2KE=12mv2

The mass is =6kg=6kg

The initial velocity is =u_1ms^-1=u1ms1

The final velocity is =u_2 ms^-1=u2ms1

The initial kinetic energy is 1/2m u_1^2=540000J12mu21=540000J

The final kinetic energy is 1/2m u_2^2=32000J12mu22=32000J

Therefore,

u_1^2=2/6*540000=180000m^2s^-2u21=26540000=180000m2s2

and,

u_2^2=2/6*32000=10666.7m^2s^-2u22=2632000=10666.7m2s2

The graph of v^2=f(t)v2=f(t) is a straight line

The points are (0,180000)(0,180000) and (4,10666.7)(4,10666.7)

The equation of the line is

v^2-180000=(10666.7-180000)/4tv2180000=10666.71800004t

v^2=-42333.3t+180000v2=42333.3t+180000

So,

v=sqrt((-42333.3t+180000)v=(42333.3t+180000)

We need to calculate the average value of vv over t in [0,4]t[0,4]

(4-0)bar v=int_0^4(sqrt(-42333.3t+180000))dt(40)¯v=40(42333.3t+180000)dt

4 barv=[((-42333.3t+180000)^(3/2)/(-3/2*42333.3))]_0^44¯v=(42333.3t+180000)323242333.340

=((-42333.3*4+180000)^(3/2)/(-63500))-((42333.3*0+180000)^(3/2)/(-63500))=(42333.34+180000)3263500(42333.30+180000)3263500

=180000^(3/2)/63500-10666.7^(3/2)/63500=180000326350010666.73263500

=1185.3=1185.3

So,

barv=1185.3/4=296.3ms^-1¯v=1185.34=296.3ms1

The average speed is =296.3ms^-1=296.3ms1