The kinetic energy is
KE=1/2mv^2KE=12mv2
The mass is =6kg=6kg
The initial velocity is =u_1ms^-1=u1ms−1
The final velocity is =u_2 ms^-1=u2ms−1
The initial kinetic energy is 1/2m u_1^2=540000J12mu21=540000J
The final kinetic energy is 1/2m u_2^2=32000J12mu22=32000J
Therefore,
u_1^2=2/6*540000=180000m^2s^-2u21=26⋅540000=180000m2s−2
and,
u_2^2=2/6*32000=10666.7m^2s^-2u22=26⋅32000=10666.7m2s−2
The graph of v^2=f(t)v2=f(t) is a straight line
The points are (0,180000)(0,180000) and (4,10666.7)(4,10666.7)
The equation of the line is
v^2-180000=(10666.7-180000)/4tv2−180000=10666.7−1800004t
v^2=-42333.3t+180000v2=−42333.3t+180000
So,
v=sqrt((-42333.3t+180000)v=√(−42333.3t+180000)
We need to calculate the average value of vv over t in [0,4]t∈[0,4]
(4-0)bar v=int_0^4(sqrt(-42333.3t+180000))dt(4−0)¯v=∫40(√−42333.3t+180000)dt
4 barv=[((-42333.3t+180000)^(3/2)/(-3/2*42333.3))]_0^44¯v=⎡⎣⎛⎝(−42333.3t+180000)32−32⋅42333.3⎞⎠⎤⎦40
=((-42333.3*4+180000)^(3/2)/(-63500))-((42333.3*0+180000)^(3/2)/(-63500))=⎛⎝(−42333.3⋅4+180000)32−63500⎞⎠−⎛⎝(42333.3⋅0+180000)32−63500⎞⎠
=180000^(3/2)/63500-10666.7^(3/2)/63500=1800003263500−10666.73263500
=1185.3=1185.3
So,
barv=1185.3/4=296.3ms^-1¯v=1185.34=296.3ms−1
The average speed is =296.3ms^-1=296.3ms−1