The kinetic energy is
KE=1/2mv^2KE=12mv2
mass is =6kg=6kg
The initial velocity is =u_1=u1
1/2m u_1^2=48000J12mu21=48000J
The final velocity is =u_2=u2
1/2m u_2^2=15000J12mu22=15000J
Therefore,
u_1^2=2/6*48000=16000m^2s^-2u21=26⋅48000=16000m2s−2
and,
u_2^2=2/6*15000=5000m^2s^-2u22=26⋅15000=5000m2s−2
The graph of v^2=f(t)v2=f(t) is a straight line
The points are (0,16000)(0,16000) and (8,5000)(8,5000)
The equation of the line is
v^2-16000=(5000-16000)/8tv2−16000=5000−160008t
v^2=-1375t+16000v2=−1375t+16000
So,
v=sqrt((-1375t+16000)v=√(−1375t+16000)
We need to calculate the average value of vv over t in [0,8]t∈[0,8]
(8-0)bar v=int_0^8sqrt((-1375t+16000))dt(8−0)¯v=∫80√(−1375t+16000)dt
8 barv=[((-1375t+16000)^(3/2)/(-3/2*1375)]_0^88¯v=⎡⎢⎣⎛⎝(−1375t+16000)32−32⋅1375⎤⎦80
=((-1375*8+16000)^(3/2)/(-2062.5))-((-1375*0+16000)^(3/2)/(-2062.5))=⎛⎝(−1375⋅8+16000)32−2062.5⎞⎠−⎛⎝(−1375⋅0+16000)32−2062.5⎞⎠
=16000^(3/2)/2062.5-5000^(3/2)/2062.5=16000322062.5−5000322062.5
=809.84=809.84
So,
barv=809.84/8=101.23ms^-1¯v=809.848=101.23ms−1