An object has a mass of 6 kg6kg. The object's kinetic energy uniformly changes from 48 KJ48KJ to 15 KJ15KJ over t in [0, 8 s]t[0,8s]. What is the average speed of the object?

1 Answer
May 15, 2017

The average speed is =101.23ms^-1=101.23ms1

Explanation:

The kinetic energy is

KE=1/2mv^2KE=12mv2

mass is =6kg=6kg

The initial velocity is =u_1=u1

1/2m u_1^2=48000J12mu21=48000J

The final velocity is =u_2=u2

1/2m u_2^2=15000J12mu22=15000J

Therefore,

u_1^2=2/6*48000=16000m^2s^-2u21=2648000=16000m2s2

and,

u_2^2=2/6*15000=5000m^2s^-2u22=2615000=5000m2s2

The graph of v^2=f(t)v2=f(t) is a straight line

The points are (0,16000)(0,16000) and (8,5000)(8,5000)

The equation of the line is

v^2-16000=(5000-16000)/8tv216000=5000160008t

v^2=-1375t+16000v2=1375t+16000

So,

v=sqrt((-1375t+16000)v=(1375t+16000)

We need to calculate the average value of vv over t in [0,8]t[0,8]

(8-0)bar v=int_0^8sqrt((-1375t+16000))dt(80)¯v=80(1375t+16000)dt

8 barv=[((-1375t+16000)^(3/2)/(-3/2*1375)]_0^88¯v=(1375t+16000)3232137580

=((-1375*8+16000)^(3/2)/(-2062.5))-((-1375*0+16000)^(3/2)/(-2062.5))=(13758+16000)322062.5(13750+16000)322062.5

=16000^(3/2)/2062.5-5000^(3/2)/2062.5=16000322062.55000322062.5

=809.84=809.84

So,

barv=809.84/8=101.23ms^-1¯v=809.848=101.23ms1