An object has a mass of 6 kg. The object's kinetic energy uniformly changes from 72 KJ to 120 KJ over t in [0, 3 s]. What is the average speed of the object?

1 Answer
Mar 16, 2016

v_a=8/3 m/s

Explanation:

Delta E_k=E_"k l"-E_"k i"" " "changing of the kinetic energy of object "
1/2m(v_l^2-v_i^2)=120-72
1/2*cancel(6)(v_l^2-v_i^2)=cancel(48)
(v_l^2-v_i^2)=16
(v_l-v_i)(v_l+v_i)=16
v_l-v_i=2
v_l+v_i=8
2*v_l=10" "v_l=5 m/s
5-v_i=2
v_i=3 m/2
a=(Delta v)/(Delta t)=(v_l-v_i)/(Delta t)=(5-3)/(3-0)=1 m/s^2" (acceleration of object)"
v_l^2=v_i^2+2*a*Delta x
5^2=3^2+2*1*Delta x
25=9+2*Delta x
16=2*Delta x
Delta x=8 m" displacement for (0-3)"
"Average velocity of an object is given by:"
v_a=("Total displacement")/("Total time")
v_a=8/3 m/s