The kinetic energy is
KE=1/2mv^2KE=12mv2
The mass is m=6kgm=6kg
The initial velocity is =u_1ms^-1=u1ms−1
The final velocity is =u_2 ms^-1=u2ms−1
The initial kinetic energy is 1/2m u_1^2=120000J12mu21=120000J
The final kinetic energy is 1/2m u_2^2=720000J12mu22=720000J
Therefore,
u_1^2=2/6*120000=40000m^2s^-2u21=26⋅120000=40000m2s−2
and,
u_2^2=2/6*720000=240000m^2s^-2u22=26⋅720000=240000m2s−2
The graph of v^2=f(t)v2=f(t) is a straight line
The points are (0,40000)(0,40000) and (3,240000)(3,240000)
The equation of the line is
v^2-40000=(240000-40000)/3tv2−40000=240000−400003t
v^2=66666.7t+40000v2=66666.7t+40000
So,
v=sqrt(66666.7t+40000)v=√66666.7t+40000
We need to calculate the average value of vv over t in [0,3]t∈[0,3]
(3-0)bar v=int_0^3(sqrt(66666.7t+40000))dt(3−0)¯v=∫30(√66666.7t+40000)dt
3 barv= [ 66666.7t+40000)^(3/2)/(3/2*66666.7)| _( 0) ^ (3) 3¯v=[66666.7t+40000)3232⋅66666.7∣∣
∣∣30
=((66666.7*3+40000)^(3/2)/(100000))-((66666.7*0+40000)^(3/2)/(100000))=⎛⎝(66666.7⋅3+40000)32100000⎞⎠−⎛⎝(66666.7⋅0+40000)32100000⎞⎠
=240000^(3/2)/100000-40000^(3/2)/100000=24000032100000−4000032100000
=1095.76=1095.76
So,
barv=1095.76/3=365.3ms^-1¯v=1095.763=365.3ms−1
The average speed is =365.3ms^-1=365.3ms−1