An object has a mass of 6 kg6kg. The object's kinetic energy uniformly changes from 120 KJ120KJ to 720 KJ720KJ over t in [0, 3 s]t[0,3s]. What is the average speed of the object?

1 Answer
Dec 12, 2017

The average speed is =365.3ms^-1=365.3ms1

Explanation:

The kinetic energy is

KE=1/2mv^2KE=12mv2

The mass is m=6kgm=6kg

The initial velocity is =u_1ms^-1=u1ms1

The final velocity is =u_2 ms^-1=u2ms1

The initial kinetic energy is 1/2m u_1^2=120000J12mu21=120000J

The final kinetic energy is 1/2m u_2^2=720000J12mu22=720000J

Therefore,

u_1^2=2/6*120000=40000m^2s^-2u21=26120000=40000m2s2

and,

u_2^2=2/6*720000=240000m^2s^-2u22=26720000=240000m2s2

The graph of v^2=f(t)v2=f(t) is a straight line

The points are (0,40000)(0,40000) and (3,240000)(3,240000)

The equation of the line is

v^2-40000=(240000-40000)/3tv240000=240000400003t

v^2=66666.7t+40000v2=66666.7t+40000

So,

v=sqrt(66666.7t+40000)v=66666.7t+40000

We need to calculate the average value of vv over t in [0,3]t[0,3]

(3-0)bar v=int_0^3(sqrt(66666.7t+40000))dt(30)¯v=30(66666.7t+40000)dt

3 barv= [ 66666.7t+40000)^(3/2)/(3/2*66666.7)| _( 0) ^ (3) 3¯v=[66666.7t+40000)323266666.7∣ ∣30

=((66666.7*3+40000)^(3/2)/(100000))-((66666.7*0+40000)^(3/2)/(100000))=(66666.73+40000)32100000(66666.70+40000)32100000

=240000^(3/2)/100000-40000^(3/2)/100000=240000321000004000032100000

=1095.76=1095.76

So,

barv=1095.76/3=365.3ms^-1¯v=1095.763=365.3ms1

The average speed is =365.3ms^-1=365.3ms1