The kinetic energy is
KE=1/2mv^2KE=12mv2
mass is =4kg=4kg
The initial velocity is =u_1=u1
1/2m u_1^2=254000J12mu21=254000J
The final velocity is =u_2=u2
1/2m u_2^2=24000J12mu22=24000J
Therefore,
u_1^2=2/4*254000=127000m^2s^-2u21=24⋅254000=127000m2s−2
and,
u_2^2=2/4*24000=12000m^2s^-2u22=24⋅24000=12000m2s−2
The graph of v^2=f(t)v2=f(t) is a straight line
The points are (0,127000)(0,127000) and (5,12000)(5,12000)
The equation of the line is
v^2-127000=(12000-127000)/5tv2−127000=12000−1270005t
v^2=-23000t+127000v2=−23000t+127000
So,
v=sqrt((-23000t+127000)v=√(−23000t+127000)
We need to calculate the average value of vv over t in [0,5]t∈[0,5]
(5-0)bar v=int_0^5sqrt((-23000t+127000))dt(5−0)¯v=∫50√(−23000t+127000)dt
5 barv=[((-23000t+127000)^(3/2)/(-3/2*23000)]_0^55¯v=⎡⎢⎣⎛⎝(−23000t+127000)32−32⋅23000⎤⎦50
=((-23000*5+127000)^(3/2)/(-34500))-((-23000*0+127000)^(3/2)/(-34500))=⎛⎝(−23000⋅5+127000)32−34500⎞⎠−⎛⎝(−23000⋅0+127000)32−34500⎞⎠
=127000^(3/2)/34500-12000^(3/2)/34500=1270003234500−120003234500
=1273.75=1273.75
So,
barv=1273.75/5=254.75ms^-1¯v=1273.755=254.75ms−1