An object has a mass of 4 kg4kg. The object's kinetic energy uniformly changes from 254 KJ254KJ to 24 KJ24KJ over t in [0, 5 s]t[0,5s]. What is the average speed of the object?

1 Answer
Apr 13, 2017

The average speed is =254.75ms^-1=254.75ms1

Explanation:

The kinetic energy is

KE=1/2mv^2KE=12mv2

mass is =4kg=4kg

The initial velocity is =u_1=u1

1/2m u_1^2=254000J12mu21=254000J

The final velocity is =u_2=u2

1/2m u_2^2=24000J12mu22=24000J

Therefore,

u_1^2=2/4*254000=127000m^2s^-2u21=24254000=127000m2s2

and,

u_2^2=2/4*24000=12000m^2s^-2u22=2424000=12000m2s2

The graph of v^2=f(t)v2=f(t) is a straight line

The points are (0,127000)(0,127000) and (5,12000)(5,12000)

The equation of the line is

v^2-127000=(12000-127000)/5tv2127000=120001270005t

v^2=-23000t+127000v2=23000t+127000

So,

v=sqrt((-23000t+127000)v=(23000t+127000)

We need to calculate the average value of vv over t in [0,5]t[0,5]

(5-0)bar v=int_0^5sqrt((-23000t+127000))dt(50)¯v=50(23000t+127000)dt

5 barv=[((-23000t+127000)^(3/2)/(-3/2*23000)]_0^55¯v=(23000t+127000)32322300050

=((-23000*5+127000)^(3/2)/(-34500))-((-23000*0+127000)^(3/2)/(-34500))=(230005+127000)3234500(230000+127000)3234500

=127000^(3/2)/34500-12000^(3/2)/34500=1270003234500120003234500

=1273.75=1273.75

So,

barv=1273.75/5=254.75ms^-1¯v=1273.755=254.75ms1