11.211.2 gg Al x (11 molmol/26.9826.98 gg)=0.4150.415 molmol Al
22.322.3 gg Ni x(11 molmol/58.6958.69 gg)=0.3800.380 molmol Ni
5.05.0 gg Co x (11 molmol/58.9358.93 gg)=0.08480.0848 molmol Co
100100 g -11.2g−11.2 gg Al -22.3g−22.3g Ni -5.0Ni−5.0 gg Co = 61.561.5 gg Fe
61.561.5 gg Fe xx((1 mol)/55.84)=1.10×(1mol55.84)=1.10 molmol Fe
Divide each one by the smallest number of moles: cobalt at 0.08480.0848 molmol.
Al = 0.415/0.0848 = 4.890.4150.0848=4.89 mol mol
Ni = 0.380/0.0848 = 4.480.3800.0848=4.48 mol mol
Co = 0.0848/0.0848 = 1.000.08480.0848=1.00 mol mol
Fe= 1.10/0.0848= 12.971.100.0848=12.97 mol mol
Since Ni is 4.48 ~~4.504.48≈4.50, we multiply everything by 22 to get a whole number, 99, for Ni.
Al = 4.894.89 mol xx 2= 10mol×2=10 molmol Al
Ni = 4.484.48 mol xx 2= 9mol×2=9 molmol Ni
Co = 1.001.00 mol xx 2= 2mol×2=2 molmol Co
Fe= 12.9712.97 mol xx 2= 26mol×2=26 molmol Fe
This gives us an empirical formula of Al_10Co_2Fe_26Ni_9Al10Co2Fe26Ni9.
If we add up the Fe, Co, Ni, and Al in the empirical formula, we get 2366.72366.7 gmol^-1gmol−1 of Alnico
100100 gg Alnico x (11 molmol Alnico/2366.72366.7 gg Alnico) x (1010 molmol Al/11 molmol Alnico) = 0.4230.423 molmol Al