A triangle has vertices A, B, and C. Vertex A has an angle of pi/2 π2, vertex B has an angle of ( pi)/3 π3, and the triangle's area is 24 24. What is the area of the triangle's incircle?

1 Answer

11.664\ \text{unit}^2

Explanation:

Given that in \Delta ABC, A=\pi/2, B={\pi}/3

C=\pi-A-B

=\pi-\pi/2-{\pi}/3

={\pi}/6

from sine in \Delta ABC, we have

\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}

\frac{a}{\sin(\pi/2)}=\frac{b}{\sin ({\pi}/3)}=\frac{c}{\sin ({\pi}/6)}=k\ \text{let}

a=k\sin(\pi/2)=k

b=k\sin({\pi}/3)=0.866k

c=k\sin({\pi}/6)=0.5k

s=\frac{a+b+c}{2}

=\frac{k+0.866k+0.5k}{2}=1.183k

Area of \Delta ABC from Hero's formula

\Delta=\sqrt{s(s-a)(s-b)(s-c)}

24=\sqrt{1.183k(1.183k-k)(1.183k-0.866k)(1.183k-0.5k)}

24=0.2165k^2

k^2=110.8545

Now, the in-radius (r) of \Delta ABC

r=\frac{\Delta}{s}

r=\frac{24}{1.183k}

Hence, the area of inscribed circle of \Delta ABC

=\pi r^2

=\pi (24/{1.183k})^2

=\frac{576\pi}{1.399489k^2}

=\frac{1293.0129}{110.8545}\quad (\because k^2=110.8545)

=11.664\ \text{unit}^2