A triangle has sides A, B, and C. The angle between sides A and B is (7pi)/12 and the angle between sides B and C is pi/12. If side B has a length of 12, what is the area of the triangle?

1 Answer
May 19, 2017

A=24.053 units^2

Explanation:

Acolor(white)(00)color(black)(pi/12)color(white)(0000000)acolor(white)(00)color(white)(0)

Bcolor(white)(00)color(white)(pi/1 3)color(white)(0000000)bcolor(white)(00)color(black)(12)

Ccolor(white)(00)color(black)((7pi)/12)color(white)(0000000)c color(white)(00)color(white)(0)

Let's find the remaining angle, B:

pi-pi/12-(7pi)/12 leaves us with pi/3

Acolor(white)(00)color(black)(pi/12)color(white)(0000000)acolor(white)(00)color(white)(0)

Bcolor(white)(00)color(black)(pi/3)color(white)(.)color(white)(0000000)bcolor(white)(00)color(black)(12)

Ccolor(white)(00)color(black)((7pi)/12)color(white)(0000000)c color(white)(00)color(white)(0)

Now we should use law of sines

(sin(pi/3))/12=(sin(pi/12))/a

a~~3.59

(sin(pi/3))/12=(sin((7pi)/12))/c

c~~13.4

Now, to find the area, we use the equation A=(hxxb)/2, where h is the height.

color(white)(a)color(white)(- - - - - - - - - -)color(black)(/)color(black)(|)
color(white)(a)color(white)(- - - - - - - - -)color(black)(/)color(white)(-)color(black)(|)
color(white)(a)color(white)(- - - - - - - -)color(black)(/)color(white)(- - .)color(black)(|)
color(white)(a)color(white)(- - - - - - -)color(black)(/)color(white)(- - -0)color(black)(|)
color(white)(- - - -)color(black)(a)color(white)(00000)color(black)(/)color(white)(- - - -0)color(black)(|)color(black)(h)
color(white)(a)color(white)(- - - - -)color(black)(/)color(white)(- - - - -0)color(black)(|)
color(white)(a)color(white)(- - - -)color(black)(/)color(white)(- - - - - -0)color(black)(|)
color(white)(a)color(white)(- - -)color(black)(/)color(white)(- - - - - - -0)color(black)(|)
color(white)(a)color(white)(- -)color(black)(/)color(white)(- - - - - - - -0)color(black)(|)
color(white)(-)color(black)(/)color(black)(..)color(black)(B)color(black)(........................................)

a=3.59, and the angle B is pi/3. We need to find the remaining length, h.

sin(pi/3)=h/(3.59)

sin(pi/3)xx3.59=h

h=3.11

Now we can find the area:

A=(hxxb)/2

A=(3.59xx13.4)/2

A=24.053 units^2