A triangle has sides A, B, and C. The angle between sides A and B is (5pi)/6 and the angle between sides B and C is pi/12. If side B has a length of 5, what is the area of the triangle?

2 Answers
Oct 22, 2017

6.25 units^2

Explanation:

enter image source here

We first need to calculate the the third angle.

B= pi -(pi/12 +(5pi)/6)=pi/12

We can calculate the length of side a using the Sine Rule:

sin(A)/a=sin(B)/b=sin(C)/c

sin(pi/12)/a=sin(pi/12)/5=>a = (5sin(pi/12))/(sin(pi/12))=5

We can find the altitude using:

a * sin(C)

Since area is 1/2xxbase xxheight

We have:

1/2*5*5*sin((5pi)/6)= 6.25 units^2

Oct 23, 2017

color(magenta)(6.249 units^2 to the nearest 3 decimal places

Explanation:

:.(cancel(5pi)^color(magenta)5)/cancel6^color(magenta)1xx180^color(magenta)30/cancelpi^color(magenta)1=150^@= angle between sides A and B

:.(cancelpi^color(magenta)1)/cancel12^color(magenta)1xxcancel180^color(magenta)15/cancelpi^color(magenta)1=15^@= angle between sides B and C

:.180-(150+15)=15^@= angle between sides A and C

The triangle= a isoceles triangle

Area of triangle= 1/2 base xx height

:.Base=C=C/(sin 150^@)=5/(sin15^@)

multiply both sides by sin150^@

:.C=(5xxsin150^@)/(sin15^@)

:.C=(5xx0.5)/0.258819045

:.C=(2.5)/0.258819045

color(magenta)(C=9.659=Base

Perpendicular heightcolor(magenta)(= D

:.D/5=Sin15^@

multiply both sides by 5

:.D=5xxsin15^@

:.D=5xx0.258819045

:.color(magenta)(D=1.294 units perpendicular height

:.The area of the trianglecolor(magenta)(=1/2xx9.659xx1.294=6.249 units^2 to the nearest 3 decimal places