A triangle has sides A, B, and C. The angle between sides A and B is (5pi)/12 and the angle between sides B and C is pi/12. If side B has a length of 3, what is the area of the triangle?

1 Answer
Jan 15, 2016

color(green)("area " = 1.125 " units"^2 -> 1 1/8 " units"^2)

Explanation:

color(blue)("Assumption: ")

As pi is used in the angular measure it is assumed that the unit is radians. (Not stated)

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Tony BTony B

color(blue)("Method Plane")

Determine /_cba

Using Sine Rule and /_cba determine length of side A
Determine h using h=Asin((5pi)/12)
Determine area hxxB/2

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("To determine" /_cba)

Sum internal angles of a triangle is 180^0 = pi" radians"

=>/_cba= pi-(5pi)/12-pi/12
color(brown)(/_cba = pi/2 -> 90^o)

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine length of A")

Using B/(sin(b))=A/sin(a)

=> 3/(sin(pi/2)) =A/sin(pi/12)

=> A= (3xxsin(pi/12))/(sin(pi/2))

But sin(pi/2) = 1

color(blue)(=> A = 3xxsin(pi/12))

color(brown)("This is an exact value so keep it in this form for now to reduce error") color(brown)("on final calculation.")
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("To determine h")

h=Asin((5pi)/12)

=>h=3xxsin(pi/12)xxsin((5pi)/12)

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("To determine area")

"area "= B/2xxh

"area "= 3/2 xx3xx sin(pi/12)xxsin((5pi)/12)

but sin(pi/12)xxsin((5pi)/12)=1/4

"area "= 3/2 xx3xx1/4

color(green)("area " = 1.125 " units"^2 -> 1 1/8 " units"^2)