A triangle has sides A, B, and C. Sides A and B have lengths of 5 and 9, respectively. The angle between A and C is (17pi)/24 and the angle between B and C is (pi)/8. What is the area of the triangle?

1 Answer
Jan 19, 2016

area of the triangle ~~ 12.889" square unites" to 3 decimal places

Explanation:

Tony B

color(blue)("Method")
Find the height h then use: "area=1/2xxAxxh
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Consider the option to find C and hence h")

Cosine Rule:
C^2=A^2+B^2-2ABcos(/_bca)

Sine Rul:
C/(sin(/_bca)) = B/(sin(/_abc))=A/(sin(/_bac))

Both require that the angle /_bca is determined.
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Using: Sum of internal angles of a triangle =180^o-> (pi " radians")

color(blue)(=> /_bca=pi-(17pi)/24-pi/8 =pi/6 -> (30^o))

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determining length of C")

Using the Sine Rule (simpler: no square roots!)

C/(sin(pi/6))=A/(sin(pi/8))

Known: color(white)(...)sin(pi/6)=sin(30^o)= 1/2

color(brown)(=>C=1/2xx5/(sin(pi/8)) ~~6.499) to 3 decimal places
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determining height h")

Project the line cb to d such that a vertical line from 'a' forms 'ad' and /_bda=pi/2 ->(90^o)

Then /_dba= pi-(17pi)/24=(7pi)/24 ->52 1/2 " degrees"

Using basic trig
sin((7pi)/24) = h/C

=>h=Csin((7pi)/24)

color(brown)(h~~ 5.156) to 3 decimal places
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("To determine area of triangle")

using: area = 1/2 xx Axx h

color(brown)("area "= 1/2xx 5xx5.156... ~~ 12.889" square unites" to 3 decimal places