A triangle has corners at (9 , 2 ), (4 ,7 ), and (5 ,8 ). What is the radius of the triangle's inscribed circle?

1 Answer
Nov 28, 2016

If a,b and c are the lengths of the sides and S is the area of the triangle the radius of the inscribed circle is given by the formula:

r=(2S)/(a+b+c)

Explanation:

The area S can be computed with Eron's formula:

S=sqrt(p(p-a)(p-b)*(p-c))

where p=(a+b+c)/2.

Substituting in the formula:

r=(sqrt(p(p-a)(p-b)*(p-c)))/(p)

Start calculating the lengths of the sides:

a=sqrt((x_2-x_1)^2+(y_2-y_1)^2)
b=sqrt((x_3-x_2)^2+(y_3-y_2)^2)
c=sqrt((x_1-x_3)^2+(y_1-y_3)^2)

a = sqrt((9-4)^2+(2-7)^2) = sqrt(25+25) = 5sqrt(2)
b= sqrt((5-4)^2+(8-7)^2) =sqrt(1+1) =sqrt(2)
c= sqrt((9-5)^2+(8-2)^2) =sqrt(16+36) =2sqrt(13)

p=(5sqrt(2)+sqrt(2)+2sqrt(13))/2 = 3sqrt(2)+sqrt(13)

r=sqrt((3sqrt(2)+sqrt(13))(3sqrt(2)+sqrt(13)-5sqrt(2))(3sqrt(2)+sqrt(13)-sqrt(2))(3sqrt(2)+sqrt(13)-2sqrt(13)))/(3sqrt(2)+sqrt(13))=sqrt((3sqrt(2)+sqrt(13))(sqrt(13)-2sqrt(2))(2sqrt(2)+sqrt(13))(3sqrt(2)-sqrt(13)))/(3sqrt(2)+sqrt(13))

and I leave the rest of the calculation :D