A triangle has corners at (8 ,3 )(8,3), (2 ,4 )(2,4), and (7 ,2 )(7,2). What is the area of the triangle's circumscribed circle?

1 Answer
Apr 18, 2018

The circle circumscribed on a triangle is the one that passes through the three vertices.

The general equation for a circle with center (a,b)(a,b) and squared radius kk is

(x - a)^2 + (y-b)^2 = k (xa)2+(yb)2=k

Substituting our three points,

(8 - a)^2 + (3 - b)^2 = k (8a)2+(3b)2=k

(2 - a)^2 + (4- b)^2 = k(2a)2+(4b)2=k

(7 -a )^2 + (2-b)^2 = k(7a)2+(2b)2=k

a^2 + b^2 - 16 a - 6 b + 64 + 9 = k a2+b216a6b+64+9=k

a^2 + b^2 - 4a - 8b + 4 + 16 = k a2+b24a8b+4+16=k

a^2 + b^2 - 14 a - 4 b + 49 + 4 = ka2+b214a4b+49+4=k

Subtracting pairs,

-12 a + 2b + 53 = 012a+2b+53=0

-2 a -2 b + 20 = 02a2b+20=0

Adding,

-14 a + 73 = 0 14a+73=0

a = 73/14a=7314

12 a + 12 b - 120 = 0 12a+12b120=0

14b - 67 = 014b67=0

b = 67/14b=6714

k = (2 - 73/14 )^2 + (4- 67/14)^2 k=(27314)2+(46714)2

k = 1/14^2 ( (28-73 )^2 + (56-67)^2 ) = 2146/14^2 = 1073/98 k=1142((2873)2+(5667)2)=2146142=107398

Usually they pick nicer numbers for these problems. Our circle's area is A = \pi r^2 = \pi kA=πr2=πk

A = frac { 1073 pi }{98} A=1073π98