A triangle has corners at (6 ,2 )(6,2), (5 ,-8 )(5,8), and (-5 ,3 )(5,3). If the triangle is dilated by a factor of 5 5 about point #(7 ,-2 ), how far will its centroid move?

1 Answer
Jul 14, 2018

color(indigo)(vec(GG') = sqrt((2- -18)^2 + (-1-3)) ~~ 20.396 " units"

Explanation:

A(6,2), B(5,-8), C(-5,3), " about point " D (7,-2), " dilation factor "5

Centroid G(x,y) = ((x_a + x_b + x_c) /3, (y_a + y_b + y_c)/3)

G(x,y) = ((6+5-5)/3, (2-8+3)/3) = (2, -1)

A'((x),(y)) = 5a - d = 5*((6),(2)) - 4*((7),(-2)) = ((2),(18))

B'((x),(y)) = 5b - d = 5*((5),(-8)) - 4*((7),(-2)) = ((-3),(-32))

C'((x),(y)) = 5c - d = 5*((-5),(3)) - 4*((7),(-2)) = ((-53),(23))

"New Centroid " G'(x,y) = ((2-3-53)/3,(18-32+23)/3) = (-18,3)

color(indigo)("Distance moved by centroid "

color(indigo)(vec(GG') = sqrt((2- -18)^2 + (-1-3)) ~~ 20.396 " units"