A triangle has corners at (5,2), (8,1), and (3,4). What is the area of the triangle's circumscribed circle?

1 Answer
Dec 7, 2016

area is 42.5π

Explanation:

enter image source here

the points A,B,C are on the circle.
we can write the fallowing equations

A(5,2)

x2+y2+ax+bx+c=0
52+22+5a+2b+c=0
25+4+5a+2b+c=0

5a+2b+c=29 (1)

B(8,1)

x2+y2+ax+bx+c=0
82+12+8a+b+c=0
64+1+8a+b+c=0

8a+b+c=65 (2)

C(3,4)

x2+y2+ax+bx+c=0
32+42+3a+4b+c=0
9+16+3a+4b+c=0

3a+4b+c=25 (3)

let's add the equation (2) to (3)
11a+5b+2c=90 (4)

expand the equation (1) by 2
10a+4b+2c=58 (5)

subtract the equation (5) from (4)

a+b=32 (5)

subtract the equation (1) from (2)

3ab=36 (6)

now add (5) to (6)

4a=68

a=17

use (5)

17+b=32

b=32+17

b=15

use (2)

8(17)15+c=65

13615+c=65

c=65+151

c=86

r:radius of circle

r=a2+b24c2

r=289+2253442

r=514344

r=1702

r2=1704=42.5

area=πr2

area=42.5π