A triangle has corners at (4 ,-6 ), (3 ,2 ), and (1 ,3 ). If the triangle is dilated by a factor of 1/3 about point #(6 ,2 ), how far will its centroid move?

1 Answer
Apr 26, 2017

The distance is =2.48

Explanation:

Let ABC be the triangle

A=(4,-6)

B=(3,2)

C=(1,3)

The centroid of triangle ABC is

C_c=((4+3+1)/3,((-6)+2+3)/3)=(8/3,-1/3)

Let A'B'C' be the triangle after the dilatation

The center of dilatation is D=(6,-2)

vec(DA')=1/3vec(DA)=1/3*<-2,-4> = <-2/3,-4/3>

A'=(-2/3+6,-4/3-2)=(16/3,-10/3)

vec(DB')=1/3vec(DB)=1/3*<-3,4> = <-1,4/3>

B'=(-1+6,4/3-2)=(5,-2/3)

vec(DC')=1/3vec(DC)=1/3*<-5,5> = <-5/3,5/3>

C'=(-5/3+6,5/3-2)=(13/3,-1/3)

The centroid C_c' of triangle A'B'C' is

C_c'=((16/3+5+13/3)/3,(-10/3-2/3-1/3)/3)=(44/9,-13/9)

The distance between the 2 centroids is

C_cC_c'=sqrt((44/9-8/3)^2+(-13/9+1/3)^2)

=1/9sqrt(20^2+10^2)=2.48

We can do this directly

vecDC'_c=1/3vecDC_c=1/3(8/3-6,-1/3+2)=(-10/9,5/9)

C'_c=(-10/9+6,5/9-2)=(44/9,-13/9)