A triangle has corners at (3 ,5 )(3,5), (7 ,9 )(7,9), and (4 ,2 )(4,2). What is the area of the triangle's circumscribed circle?

1 Answer
Oct 12, 2016

A = (145pi)/8A=145π8

Explanation:

Using the 3 points and the standard equation of a circle, r^2 = (x - h)^2 + (x - k)^2r2=(xh)2+(xk)2, we can write 3 equations:

r^2 = (3 - h)^2 + (5 - k)^2r2=(3h)2+(5k)2
r^2 = (7 - h)^2 + (9 - k)^2r2=(7h)2+(9k)2
r^2 = (4 - h)^2 + (2 - k)^2r2=(4h)2+(2k)2

Because r^2 = r^2r2=r2, we can set the right side of the first equation equal to the right side of the second equation and the third equation:

(3 - h)^2 + (5 - k)^2 = (7 - h)^2 + (9 - k)^2(3h)2+(5k)2=(7h)2+(9k)2
(3 - h)^2 + (5 - k)^2 = (4 - h)^2 + (2 - k)^2(3h)2+(5k)2=(4h)2+(2k)2

Expand the squares:

9 - 6h + h^2 + 25 - 10k + k^2 = 49 - 14h + h^2 + 81 - 18k + k^296h+h2+2510k+k2=4914h+h2+8118k+k2
9 - 6h + h^2 + 25 - 10k + k^2 = 16 - 8h + h^2 + 4 - 4k + k^296h+h2+2510k+k2=168h+h2+44k+k2

combine like terms and cancel the h^2h2 and k^2k2 terms:

8k = 96 - 8h8k=968h
-6k = -2h - 146k=2h14

Divide the first equation by 8:

k = 12 - hk=12h
-6k = -2h - 146k=2h14

Substitution:

-6(12 - h) = -2h - 146(12h)=2h14

-72 + 6h = -2h - 1472+6h=2h14

8h = 588h=58

h = 29/4h=294

k = 48/4 - 29/4k=484294

k = 19/4k=194

Substitute (29/4, 19/4)(294,194) for (h, k)(h,k):

r^2 = (3 - 29/4)^2 + (5 - 19/4)^2r2=(3294)2+(5194)2

r^2 = (-17/4)^2 + (1/4)^2r2=(174)2+(14)2

r^2 = 290/16 = 145/8r2=29016=1458

The area of a circle is pir^2πr2

A = (145pi)/8A=145π8