A triangle has corners at (2 , 3 ), (1 ,5 ), and (6 ,7 ). What is the radius of the triangle's inscribed circle?

1 Answer
Jul 29, 2018

color(orange)("Radius of in-circle "= r = A_t / s ~~ 0.9038

Explanation:

A(2, 3), B(1, 5), C(6, 7)

c = sqrt((2-1)^2 + (3-5)^2) ~~ sqrt 5

a= sqrt ((1-6)^2 + (5-7)^2) ~~ sqrt 29

b = sqrt((6-2)^2 + (7-3)^2) ~~ sqrt 32

Semi perimeter s = (a + b + c)/2

s = (sqrt 5 + sqrt 29 + sqrt 32 ) / 2 = 6.639

Area of triangle A_t = sqrt(s (s-a) (s-b) (s-c)), " using Heron's formula"

A_t = sqrt(6.639 (6.639- sqrt 5) (6.639-sqrt 29) (6.639-sqrt 32)) ~~ 6

color(orange)("Radius of in-circle "= r = A_t / s = 6 / 6.639 ~~ 0.9038