A triangle has corners at (-2 ,1 )(2,1), (8 ,-5 )(8,5), and (-1 ,-2 )(1,2). If the triangle is dilated by a factor of 5 5 about point #(4 ,-6 ), how far will its centroid move?

1 Answer
Apr 10, 2017

The centroid will move by =18.52=18.52

Explanation:

Let ABCABC be the triangle

A=(-2,1)A=(2,1)

B=(8,-5)B=(8,5)

C=(-1,-2)C=(1,2)

The centroid of triangle ABCABC is

C_c=((-2+8-1)/3,(1-5-2)/3)=(5/3,-2)Cc=(2+813,1523)=(53,2)

Let A'B'C' be the triangle after the dilatation

The center of dilatation is D=(4,-6)

vec(DA')=5vec(DA)=5*<-6,7> = <-30,35>

A'=(-30+4,35-6)=(-26,29)

vec(DB')=5vec(DB)=5*<4,1> = <20,5>

B'=(20+4,5-6)=(24,-1)

vec(DC')=5vec(DC)=5*<-5,4> = <-25,20>

C'=(-25+4,20-6)=(-21,14)

The centroid C_c' of triangle A'B'C' is

C_c'=((-26+24-21)/3,(29-1+14)/3)=(-23/3,42/3)

The distance between the 2 centroids is

C_cC_c'=sqrt((-23/3-5/3)^2+(42/3+2)^2)

=1/3sqrt(28^2+48^2)=55.57/3=18.52