A triangle has corners at (1, 2 ), ( 2, 3 ), and ( 1 , 5 ). If the triangle is dilated by 4 x around (3, 1), what will the new coordinates of its corners be?
2 Answers
The new coordinates are
Explanation:
Let the corners of the triangle be
And the point
Let the corners of the triangle be
So,
Explanation:
"let the vertices of the triangle be"
A(1,2),B(2,3)" and " C(1,5)
"and A',B',C' be the images of A,B and C respectively"
"under the dilatation"
"let the centre of dilatation be "D(color(magenta)(3),color(blue)(1))
• vec(DA)=ula-uld=((1),(2))-((3),(1))=((-2),(1))
rArrvec(DA')=color(red)(4)vec(DA)=color(red)(4)((-2),(1))=((-8),(4))
rArrA'=(color(magenta)(3)-8,color(blue)(1)+4)=(-5,5)
• vec(DB)=ulb-uld=((2),(3))-((3),(1))=((-1),(2))
rArrvec(DB')=color(red)(4)vec(DB)=color(red)(4)((-1),(2))=((-4),(8))
rArrB'=(color(magenta)(3)-4,color(blue)(1)+8)=(-1,9)
• vec(DC)=ulc-uld=((1),(5))-((3),(1))=((-2),(4))
rArrvec(DC')=color(red)(4)vec(DC)=color(red)(4)((-2),(4))=((-8),(16))
rArrC'=(color(magenta)(3)-8,color(blue)(1)+16))=(-5,17)