(a)(a)
"using the "color(blue)"product to sum/difference formula"using the product to sum/difference formula
•color(white)(x)2sinAsinB=cos(A-B)-cos(A+B)∙x2sinAsinB=cos(A−B)−cos(A+B)
"here "A=7x" and "B=3xhere A=7x and B=3x
sin7xsin3xsin7xsin3x
=1/2(cos(7x-3x)-cos(7x+3x))=12(cos(7x−3x)−cos(7x+3x))
=1/2(cos4x-cos10x)=12(cos4x−cos10x)
(b)(b)
"using the "color(blue)"sum/difference identities for tan"using the sum/difference identities for tan
•color(white)(x)tan(x+-y)=(tanx+-tany)/(1∓tanxtany)∙xtan(x±y)=tanx±tany1∓tanxtany
"note that "tan(pi/4)=1note that tan(π4)=1
tan(theta+pi/4)tan(theta-pi/4)tan(θ+π4)tan(θ−π4)
=(tantheta+tan(pi/4))/(1-tanthetatan(pi/4))xx(tantheta-tan(pi/4))/(1+tanthetatan(pi/4))=tanθ+tan(π4)1−tanθtan(π4)×tanθ−tan(π4)1+tanθtan(π4)
=(tantheta+1)/(1-tantheta)xx(tantheta-1)/(1+tantheta)=tanθ+11−tanθ×tanθ−11+tanθ
=(tan^2theta-1)/(1-tan^2theta)=tan2θ−11−tan2θ
=(-cancel((1-tan^2theta)))/cancel((1-tan^2theta))=-1" as required"