A function f is defined by f(x) 5-2sin2x For 0<x<pie a)find the .range of f. b)sketch the graph of y=f (x)?

1 Answer
Nov 18, 2017

The range is f(x) in [3,7]f(x)[3,7]. See the graph below

Explanation:

To find the range, proceed as follows :

-1 <= sinx <=11sinx1

-1 <= sin2x <=11sin2x1

1 >= -sin2x >=-11sin2x1

2 >= -2sin2x >=-222sin2x2

2+5 >= (5-2sin2x )>=-2+52+5(52sin2x)2+5

3<= f(x)=(5-2sin2x) <=73f(x)=(52sin2x)7

Therefore,

the range is f(x) in [3,7]f(x)[3,7]

To sketch the graph in the domain x in (0, pi)x(0,π)

Calculate the following values

color(white)(aaaa)aaaaxxcolor(white)(aaaa)aaaaf(x)f(x)

color(white)(aaaa)aaaa00color(white)(aaaa)aaaa55

color(white)(aaaa)aaaapi/4π4color(white)(aaaa)aaaa33

color(white)(aaaa)aaaapi/2π2color(white)(aaaa)aaaa55

color(white)(aaaa)aaaa3/4pi34πcolor(white)(aaaa)aaaa77

color(white)(aaaa)aaaapiπcolor(white)(aaaa)aaaa55

5-2sin2x=652sin2x=6

2sin2x=-12sin2x=1

sin2x=-1/2sin2x=12

2x=7pi/62x=7π6, =>, x=7/12pix=712π

2x=11/6pi2x=116π, =>, x=11/12pix=1112π

See the graph below

graph{(y-5+2sin(2x))(y-6)=0 [-10, 10, -5, 5]}