To find the range, proceed as follows :
-1 <= sinx <=1−1≤sinx≤1
-1 <= sin2x <=1−1≤sin2x≤1
1 >= -sin2x >=-11≥−sin2x≥−1
2 >= -2sin2x >=-22≥−2sin2x≥−2
2+5 >= (5-2sin2x )>=-2+52+5≥(5−2sin2x)≥−2+5
3<= f(x)=(5-2sin2x) <=73≤f(x)=(5−2sin2x)≤7
Therefore,
the range is f(x) in [3,7]f(x)∈[3,7]
To sketch the graph in the domain x in (0, pi)x∈(0,π)
Calculate the following values
color(white)(aaaa)aaaaxxcolor(white)(aaaa)aaaaf(x)f(x)
color(white)(aaaa)aaaa00color(white)(aaaa)aaaa55
color(white)(aaaa)aaaapi/4π4color(white)(aaaa)aaaa33
color(white)(aaaa)aaaapi/2π2color(white)(aaaa)aaaa55
color(white)(aaaa)aaaa3/4pi34πcolor(white)(aaaa)aaaa77
color(white)(aaaa)aaaapiπcolor(white)(aaaa)aaaa55
5-2sin2x=65−2sin2x=6
2sin2x=-12sin2x=−1
sin2x=-1/2sin2x=−12
2x=7pi/62x=7π6, =>⇒, x=7/12pix=712π
2x=11/6pi2x=116π, =>⇒, x=11/12pix=1112π
See the graph below
graph{(y-5+2sin(2x))(y-6)=0 [-10, 10, -5, 5]}