6(tanx)^2-4(sinx)^2=16(tanx)24(sinx)2=1. Solve x?

1 Answer

6(tanx)^2-4(sinx)^2=16(tanx)24(sinx)2=1

=>6(tan^2x)xxcos^2x-4sin^2x xxcos^2x=cos^2x6(tan2x)×cos2x4sin2x×cos2x=cos2x

=>6sin^2x-4sin^2x xxcos^2x=cos^2x6sin2x4sin2x×cos2x=cos2x

=>6(1-cos^2x)-4(1-cos^2x) cos^2x=cos^2x6(1cos2x)4(1cos2x)cos2x=cos2x

=>6-6cos^2x-4cos^2x+4cos^4x=cos^2x66cos2x4cos2x+4cos4x=cos2x

=>4cos^4x-11cos^2x+6=04cos4x11cos2x+6=0

=>4cos^4x-8cos^2x-3cos^2x+6=04cos4x8cos2x3cos2x+6=0

=>4cos^2x(cos^2x-2)-3(cos^2x-2)=04cos2x(cos2x2)3(cos2x2)=0

=(cos^2x-2)(4cos^2x-3)=0=(cos2x2)(4cos2x3)=0

when cos^2x-2=0=>cosxpmsqrt2cos2x2=0cosx±2

but -1<=cosx <=+11cosx+1
so this solution is not acceptable.

when

(4cos^2x-3)=0(4cos2x3)=0

cosx=pmsqrt3/2cosx=±32

For

cosx=+sqrt3/2=cos(pi/6)cosx=+32=cos(π6)

=>x=2npipmpi/6" where " n in ZZ

For

cosx=-sqrt3/2=-cos(pi/6)=cos((5pi)/6)

=>x=2npipm(5pi)/6" where " n in ZZ