tanx/(1-cotx)+cotx/(1-tanx)tanx1−cotx+cotx1−tanx,
=tanx/(1-1/tanx)+(1/tanx)/(1-tanx)=tanx1−1tanx+1tanx1−tanx,
=tan^2x/(tanx-1)-1/{tanx(tanx-1)}=tan2xtanx−1−1tanx(tanx−1),
=(tan^3x-1)/{tanx(tanx-1)}=tan3x−1tanx(tanx−1),
={cancel((tanx-1))(tan^2x+tanx+1)}/{tanxcancel((tanx-1))},
=tan^2x/tanx+tanx/tanx+1/tanx,
=tanx+1+1/tanx,
=1+{sinx/cosx+cosx/sinx},
=1+(sin^2x+cos^2x)/(sinxcosx),
=1+1/(sinxcosx),
=1+1/cosx*1/sinx,
=1+secxcscx, as desired!