Question #bf4da

1 Answer
Nov 14, 2017

The answer is :

u'-v'=u^2+v^2

Explanation:

Using the quotient rule for differentiation:

u'=((cosx-sinx)(cosx-sinx)-(cosx+sinx)(-cosx-sinx))/(cosx-sinx)^2

u'=((cosx-sinx)^2+(cosx+sinx)^2)/(cosx-sinx)^2

u'=1+((cosx+sinx)^2)/(cosx-sinx)^2=1+u^2

From

u=1/v

we get

v=1/u=(cosx-sinx)/(cosx+sinx)

Using the quotient rule again we arrive at:

v'=1-v^2

u'-v'=1+u^2-(1-v^2)=1+u^2-1+v^2=u^2+v^2