# Question c7570

Nov 9, 2017

See a solution process below:

#### Explanation:

First, let's write $1 \frac{1}{8} \text{ cups}$ as an improper fraction:

$1 \frac{1}{8} = 1 + \frac{1}{8} = \left(\frac{8}{8} \times 1\right) + \frac{1}{8} = \frac{8}{8} + \frac{1}{8} = \frac{8 + 1}{8} = \frac{9}{8}$

Let's call the amount of fiber we are looking for: $f$

We can then write the relationship and solve for $f$:

$\frac{f}{\frac{9}{8} \text{cups") = (3"g")/(1/2"cups}}$

$\textcolor{red}{\frac{9}{8}} \textcolor{red}{\text{cups") xx f/(9/8"cups") = color(red)(9/8)color(red)("cups") xx(3"g")/(1/2"cups}}$

cancel(color(red)(9/8)color(red)("cups")) xx f/color(red)(cancel(color(black)(9/8"cups"))) = color(red)(9/8)cancel(color(red)("cups")) xx(3"g")/(1/2color(red)(cancel(color(black)("cups"))))#

$f = \textcolor{red}{\frac{9}{8}} \times \frac{3 \text{g}}{\frac{1}{2}}$

$f = \frac{\frac{27 \text{g}}{8}}{\frac{1}{2}}$

$f = \frac{\left(27 \text{g}\right) \times 2}{8 \times 1}$

$f = \frac{54 \text{g}}{8}$

$f = 6.75 \text{g}$

There are close to 7 grams of fiber for the oatmeal left in the box.