Find the function composition f@g(x)=f(g(x))f∘g(x)=f(g(x)) where f(x ) = 8x-18 f(x)=8x−18 and g(x) = 1/2x-1 g(x)=12x−1?
1 Answer
Oct 6, 2017
f(g(x)) = 4x-26f(g(x))=4x−26
g(f(x)) =4x-10 g(f(x))=4x−10
Explanation:
We have:
f(x ) = 8x-18 f(x)=8x−18
g(x) = 1/2x-1 g(x)=12x−1
And so
f(g(x)) = f(1/2x-1)f(g(x))=f(12x−1)
" " = 8(1/2x-1)-18 =8(12x−1)−18
" " = 4x-8-18 =4x−8−18
" " = 4x-26 =4x−26
And:
g(f(x)) =g(8x-18) g(f(x))=g(8x−18)
" " = 1/2(8x-18)-1 =12(8x−18)−1
" " = 4x-9-1 =4x−9−1
" " = 4x-10 =4x−10