Question #1c88f

1 Answer
Sep 1, 2017

1.2 * 10^(-11)1.21011

Explanation:

The thing to remember when multiplying numbers written in scientific notation is that you must multiply the mantissae and the exponents separately.

For a number written in scientific notation, you have

color(white)(aa)color(blue)(m) xx 10^(color(purple)(n) color(white)(a)stackrel(color(white)(aaaaaa))(larr))color(white)(acolor(black)("the")acolor(purple)("exponent")aa)aam×10naaaaaaa−−atheaexponentaa
color(white)(a/acolor(black)(uarr)aaaa)aa⏐ ⏐aaaa
color(white)(color(black)("the")acolor(blue)("mantissa")a)theamantissaa

In your case, you have

color(blue)(3.0) * 10^color(purple)(-14)" " and " " color(blue)(4.0) * 10^color(purple)(2)3.01014 and 4.0102

This means that when you multiply these two numbers, you have

color(blue)(3.0) * 10^color(purple)(-14) * color(blue)(4.0) * 10^color(purple)(2)3.010144.0102

= (color(blue)(3.0 * 4.0)) * (10^color(purple)(-14) * 10^color(purple)(2))=(3.04.0)(1014102)

= color(blue)(12) * 10^color(purple)((-14 + 2))=1210(14+2)

= color(blue)(12) * 10^color(purple)(-12)=121012

More often than not, you will be dealing with normalized scientific notation, for which

1 <= |color(blue)(m)| < 101|m|<10

To express the result of the multiplication in normalized scientific notation, divide the mantissa by 1010 and multiply by 1010 by adding 11 to the exponent.

color(blue)(12) * 10^color(purple)(-12)121012

= color(blue)(12)/10 * 10^color(purple)(-12) * 10=1210101210

= color(blue)(1.2) * 10^color(purple)(-11)=1.21011

Therefore, you can say that

3.0 * 10^(-14) * 4.0 * 10^(2) = 1.2 * 10^(-11)3.010144.0102=1.21011

The answer is rounded to two sig figs, the number of sig figs you have for the two numbers.