If M(x,y) is homogeneous then
M(lambda x, lambda y) = lambda^alpha M(x,y) with lambda in RR constant, so considering
{(x = lambda xi),(y= lambda eta):} we have
{(dx = lambda d xi),(dy= lambda d eta):}
and substituting
M(x,y) dx+N(x,y)dy=0 rArr M(lambda xi, lambda eta)lambda d xi+N(lambda xi, lambda eta) lambda eta = 0 rArr lamda^alpha M(xi, eta)d xi+lambda^alpha N(xi,eta) d eta = 0 then
a) M(xi, eta)d xi+ N(xi,eta) d eta = 0
Considering now y=lambda(x) x we have
dy/dx = lambda + x (d lambda)/(dx) and
dy/dx = -(M(x,y))/(N(x,y)) rArr lambda+x (d lambda)/(dx) = -x^alpha/x^alpha(M(1,lambda))/(N(1,lambda))= -(M(1,lambda))/(N(1,lambda)) = psi(lambda) or grouping variables
(dx)/x=(d lambda)/(psi(lambda)-lambda) and integrating
b) x = c e^(theta(lambda)) = c e^(theta(y/x)) = c phi(y/x)
The remaining items are left to the proficient reader.