If bb(ul u) = << −1,0,2 >> , bb(ul v) = << 3,1,2 >> and bb(ul w) = << 1,−2,−2 >> then find?
(a) 3bb(ul v)−2bb(ul u)
(b) kbb(ul u) + bb(ul v) + kbb(ul w)
(c) || bb(vec(PQ)) || where bb(vec(OP)) = -3bb(ul u) and bb(vec(OQ)) = bb(ul v) + 5bb(ul w)
(d) Area of the parallelogram with sides bb(ul u) and 2bb(ul v)
(a)
(b)
(c)
(d) Area of the parallelogram with sides
1 Answer
We have:
bb(ul u) = << −1,0,2 >>
bb(ul v) = << 3,1,2 >>
bb(ul w) = << 1,−2,−2 >>
Then:
Part (a):
3bb(ul v)−2bb(ul u) = 3 << 3,1,2 >> - 2<< −1,0,2 >>
" " = << 9,3,6 >> - << −2,0,4 >>
" " = << 11,3,2 >>
Part (b):
kbb(ul u) + bb(ul v) + kbb(ul w) = k<< −1,0,2 >> + << 3,1,2 >> + k<< 1,−2,−2 >>
" " = << −k,0,2k >> + << 3,1,2 >> + << k,−2k,−2k >>
" " = << −k+3+k,0+1-2k,2k+2-2k >>
" " = << 3,1-2k,2 >>
Part (c):
Let:
bb(vec(OP)) = -3bb(ul u)
" " = -3<< −1,0,2 >>
" " = << 3,0,-6 >>
bb(vec(OQ)) = bb(ul v) + 5bb(ul w)
" " = << 3,1,2 >> + 5<< 1,−2,−2 >>
" " = << 3,1,2 >> + << 5,−10,−10 >>
" " = << 8,-9,-8 >>
Then:
bb(vec(PQ)) = bb(vec(OQ)) - bb(vec(OP))
" " = << 8,-9,-8 >> - << 3,0,-6 >>
" " = << 5,-9,-2 >>
Finally:
|| bb(vec(PQ)) || = || << 5,-9,-2 >> ||
" " = sqrt( 5^2 + (-9)^2 +(-2)^2 )
" " = sqrt( 25 + 81 + 4 )
" " = sqrt( 110 )
Part (c):
The area is given by the magnitude of the cross product:
A = || bb(ul u) xx bb(ul v) ||
we calculate the cross product using:
bb(ul u) xx bb(ul v) = << −1,0,2 >> xx << 3,1,2 >>
\ \ \ = | ( bb(ul(hat i)),bb(ul(hat j)),bb(ul(hat k))), (−1,0,2), (3,1,2) |
\ \ \ = | (0,2),(1,2)|bb(ul(hat i)) - | (-1,2),(3,2)|bb(ul(hat j)) + | (-1,0),(3,1)|bb(ul(hat k))
\ \ \ = (0-2) bb(ul(hat i)) - (-2-6)bb(ul(hat j)) + (-1-0)bb(ul(hat k))
\ \ \ = -2 bb(ul(hat i)) +8bb(ul(hat j)) -bb(ul(hat k))
Hence,
A = || bb(ul u) xx bb(ul v) ||
\ \ \ = sqrt((-2)^2 + 8^2+(-1)^2)
\ \ \ = sqrt(4+64+1) ||
\ \ \ = sqrt(69)