Question #0c521

1 Answer
Apr 8, 2017

Let

#x^3= 64(cos(pi)+isin(pi))#

#=>x^3= 64(-1+ixx0)#

#=>x^3+64=0#

#=>x^3+4^3=0#

#=>(x+4)(x^2-4x+16)=0#

So when #x+4=0#

#=>x=-4=4(-1+ixx0)=4(cos(pi)+isin(pi))#

when

# (x^2-4x+16)=0#

#=>x=(4pmsqrt(4^2-4*1*16))/2#

#=>x=(4pmsqrt(-48))/2#

#=>x=(4pm4sqrt(-3))/2#

#=>x=(2pmi2sqrt(3))#

#=>x=4(1/2pmisqrt(3)/2)#

So #=>x=4(cos(pi/3)pmisin(pi/3))#

So three cube roots are

#4(cos(pi)+isin(pi)),4(cos(pi/3)pmisin(pi/3))#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Applying de moivre's formula

we have

#x^3= 64(cos(pi)+isin(pi))#

#x= 64^(1/3)(cos((pi+2pik)/3)+isin((pi+2pik)/3))#

where k varies over the integer values from 0 to 2

For #k=0#

#x= 64^(1/3)(cos((pi+2pixx0)/3)+isin((pi+2pixx0)/3))#

#=>x= 4(cos((pi)/3)+isin((pi)/3))#

For #k=1#

#=>x= 64^(1/3)(cos((pi+2pixx1)/3)+isin((pi+2pixx1)/3))#

#=>x= 4(cos((pi)+isin((pi))#

For #k=2#

#x= 64^(1/3)(cos((pi+2pixx2)/3)+isin((pi+2pixx2)/3))#

#=>x= 4(cos(2pi-pi/3)+isin(2pi-pi/3))#

#=>x= 4(cos(pi/3)-isin(pi/3))#

Please note

A modest extension of the version of de Moivre's formula

https://en.wikipedia.org/wiki/De_Moivre%27s_formula