Find the maxima for x/(1+xtanx)x1+xtanx?

1 Answer
Mar 24, 2017

We have a local maxima at x=0.739x=0.739

Explanation:

A maxima occurs when the derivative of the function equals zero and second derivative is negative. Hence we first find out the derivative of x/(1+xtanx)x1+xtanx for which we use quotient rule.

According to quotient rule if Y=(f(x))/(g(x))Y=f(x)g(x)

then (dy)/(dx) = (g(x)(df(x))/(dx)-f(x)(dg(x))/(dx))/((g(x))^2)dydx=g(x)df(x)dxf(x)dg(x)dx(g(x))2

Here f(x)=xf(x)=x and (df)/(dx)=1dfdx=1 and

g(x)=1+xtanxg(x)=1+xtanx and (dg)/(dx)=tanx+xsec^2xdgdx=tanx+xsec2x

Hence (dy)/(dx) = (1+xtanx-x(tanx+xsec^2x))/(1+xtanx)^2dydx=1+xtanxx(tanx+xsec2x)(1+xtanx)2

= (1-x^2sec^2x)/(1+xtanx)^21x2sec2x(1+xtanx)2

and (dy)/(dx)=0dydx=0 when 1-x^2sec^2x=01x2sec2x=0 or

x^2=cos^2xx2=cos2x or x=+-cosxx=±cosx

We now workout second derivative
(d^2y)/(dx^2)=((1+xtanx)^2(-2xsec^2x-2x^2sec^2xtanx)-2(1-x^2sec^2x)(1+xtanx)(tanx+xsec^2x))/(1+xtanx)^4d2ydx2=(1+xtanx)2(2xsec2x2x2sec2xtanx)2(1x2sec2x)(1+xtanx)(tanx+xsec2x)(1+xtanx)4

amd when x=+-cosxx=±cosx

(d^2y)/(dx^2)=(-2(1+-sinx)^2(x^3+tanx))/(1+xtanx)^4d2ydx2=2(1±sinx)2(x3+tanx)(1+xtanx)4

As (d^2y)/(dx^2)<=0d2ydx20 when x=cosxx=cosx not at x=-cosxx=cosx

We have a local maxima at x=cosxx=cosx and graph gives the solution as x=0.739x=0.739 as appears from graph below. See the point of intersection of y=xy=x and y=cosxy=cosx is at about x=0.739x=0.739.

graph{(y-x)(y-cosx)=0 [-0.667, 1.833, -0.13, 1.12]}

Graph of x/(1+xtanx)x1+xtanx as it appears around local maxima is given below.

graph{x/(1+xtanx) [-0.0256, 1.2155, -0.0604, 0.5603]}