The function is
f(x)=100/(1+2^-x)=100/(1+1/2^x)
AA x in RR, f(x)>0
Therefore,
The domain is x in RR
To find the range, proceed as follows :
Let y=100/(1+2^-x)
y(1+2^-x)=100
y+y2^-x=100
y2^-x=100-y
2^-x=(100-y)/y
2^x=y/(100-y)
Taking logarithms
xln2=ln(y/(100-y))
x=1/ln2ln(y/(100-y))
In order for this equation to have solutions,
y/(100-y)>0
Let f(y)=y/(100-y)
Build a sign chart
color(white)(aaaa)ycolor(white)(aaaaaaa)-oocolor(white)(aaaa)0color(white)(aaaaaa)100color(white)(aaaa)+oo
color(white)(aaaa)ycolor(white)(aaaaaaaaaaa)-color(white)(aaaa)+color(white)(aaaaa)+color(white)(aaaa)
color(white)(aaaa)100-ycolor(white)(aaaaaa)+color(white)(aaaa)+color(white)(aaa)||color(white)(a)-
color(white)(aaaa)f(y)color(white)(aaaaaaaaa)-color(white)(aaaa)+color(white)(aaa)||color(white)(a)-
Therefore,
f(y)>0 when y in (0, 100)
The range is y in (0, 100)
graph{100/(1+2^-x) [-205.5, 222.2, -83.2, 130.5]}