How do you determine which of these hydrogen atom energy transitions has the highest energy difference? Isn't it (4)(4) since it is the odd one out?
1)1) n = 4->2n=4→2
2)2) n = 5->2n=5→2
3)3) n = 7->2n=7→2
4)4) n = 2->1n=2→1
1 Answer
It is actually
Well, you can compare options (1), (2), and (4) and see that since
Looking at
DeltaE = -hcR_H(1/n_f^2 - 1/n_i^2)
DeltaE_(4->2) = -(6.626 xx 10^(-34) "J"cdot"s")(2.998 xx 10^(8) "m/s")("109737 m"^(-1))(1/2^2 - 1/4^2)
= 4.087 xx 10^(-21) "J"
DeltaE_(2->1) = -(6.626 xx 10^(-34) "J"cdot"s")(2.998 xx 10^(8) "m/s")("109737 m"^(-1))(1/1^2 - 1/2^2)
= 1.635 xx 10^(-20) "J"
In fact, it is NOT. So actually,
DeltaE_(5->2) = -(6.626 xx 10^(-34) "J"cdot"s")(2.998 xx 10^(8) "m/s")("109737 m"^(-1))(1/2^2 - 1/5^2)
= 4.578 xx 10^(-21) "J"
DeltaE_(7->2) = -(6.626 xx 10^(-34) "J"cdot"s")(2.998 xx 10^(8) "m/s")("109737 m"^(-1))(1/2^2 - 1/7^2)
= 5.005 xx 10^(-21) "J"
Thus, the energy difference ordering is:
bb(DeltaE_(2->1) > DeltaE_(7->2) > DeltaE_(5->2) > DeltaE_(4->2))
or:
(3) > (4) > (2) > (1)
Thus, the answer is option (3). Always check your numbers.